Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Di-*tert*-butyl 2,2'-[(biphenyl-4,4'-diyl)dioxy]diacetate

Qamar Ali,^a Sammer Yousuf,^a Muhammad Raza Shah^a and Seik Weng Ng^b*

^aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 15 June 2010; accepted 16 June 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.120; data-to-parameter ratio = 18.9.

The complete molecule of the title compound, $C_{24}H_{30}O_6$, is generated by a crystallographic inversion centre. In the unique part of the molecule, the four-atom $-O-CH_2-C(=O)-O-$ chain between the benzene ring and the *tert*-butyl group assumes a zigzag conformation $[O-C-C-O \text{ torsion angle} = -162.3 (1)^{\circ}]$.

Related literature

For a related structure, see: Shah et al. (2010).

Experimental

Crystal data

$\begin{array}{l} C_{24}H_{30}O_6 \\ M_r = 414.48 \\ \text{Monoclinic, } P2_1/c \\ a = 9.9390 \ (7) \ \text{\AA} \\ b = 12.6247 \ (8) \ \text{\AA} \\ c = 9.8458 \ (7) \ \text{\AA} \\ \beta = 114.645 \ (1)^\circ \end{array}$	$V = 1122.88 (13) \text{ Å}^3$ Z = 2 Mo K α radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 293 K $0.4 \times 0.3 \times 0.2 \text{ mm}$
Data collection	
Bruker SMART APEX diffractometer 7450 measured reflections	2572 independent reflections 2029 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.120$ S = 1.02 2572 reflections	136 parameters H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.16 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.14 \text{ e } \text{ Å}^{-3}$

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X*-*SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the Higher Education Commission of Pakistan and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5072).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Shah, K., Yousuf, S., Raza Shah, M. & Ng, S. W. (2010). *Acta Cryst.* E66, o1705. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122. Westein S. B. (2010). nuklClE. In properties.

Westrip, S. P. (2010). publCIF. In preparation.

supplementary materials

Acta Cryst. (2010). E66, o1739 [doi:10.1107/S1600536810023391]

Di-tert-butyl 2,2'-[(biphenyl-4,4'-diyl)dioxy]diacetate

Q. Ali, S. Yousuf, M. Raza Shah and S. W. Ng

Comment

We are interested in the solid-state structures of *V*-shaped molecules; recently we reported the crystal structure of 9,9-bis[4-(*tert*-butoxycarbonylmethyloxy)phenyl]fluorene (Shah *et al.*, 2010). For such a shape, the number of carbon atoms making up the kink must be an odd number. In the present compound, the two aromatic rings are directly connected; the molecule lies on a center of symmetry (Fig. 1). The four-atom $-O-CH_2-C(=O)-O-$ chain between the aromatic ring and the *tert*-butyl group assumes a zigzag conformation [O-C-C-O torsion angle 162.3 (1) °].

Experimental

4,4'-Dihydroxybiphenyl (1 g, 2.4 mmol) was dissolved in acetone (25 ml). To the solution was added potassium carbonate (0.67 g, 4.8 mmol) and *t*-butyl bromoacetate (0.75 ml, 4.8 mmol). The mixture was stirred at room temperature for 3 h. The solvent was evaporated under reduced pressure and the residue was dissolved in a mixture of water (50 ml) and dichloromethane (50 ml). The aqueous layer was extracted three times with dichloromethane. The combined organic phases were evaporated under reduced pressure and the solid material was recrystallized from *n*-hexane.

Refinement

H-atoms were placed in calculated positions [C–H 0.93–0.97 Å, U(H) 1.2–1.5U(C)] and were included in the refinement in the riding model approximation.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $C_{24}H_{30}O_6$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry code: (i) = 1 - x, 1 - y, 1 - z.

Di-tert-butyl 2,2'-[(biphenyl-4,4'-diyl)dioxy]diacetate

Crystal data $C_{24}H_{30}O_6$ $M_r = 414.48$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.9390 (7) Å b = 12.6247 (8) Å

F(000) = 444 $D_x = 1.226 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2683 reflections $\theta = 2.8-28.4^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$

c = 9.8458 (7) Å	T = 293 K
$\beta = 114.645 \ (1)^{\circ}$	Block, colorless
$V = 1122.88 (13) \text{ Å}^3$	$0.4\times0.3\times0.2~mm$
Z = 2	

Data collection

Bruker SMART APEX diffractometer	2029 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.024$
graphite	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
ω scans	$h = -9 \rightarrow 12$
7450 measured reflections	$k = -15 \rightarrow 16$
2572 independent reflections	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.120$	H-atom parameters constrained
<i>S</i> = 1.02	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0597P)^{2} + 0.1713P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2572 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
136 parameters	$\Delta \rho_{max} = 0.16 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.14 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.16964 (10)	1.03985 (7)	0.42919 (10)	0.0453 (2)
O2	0.24672 (13)	0.91302 (9)	0.31464 (12)	0.0643 (3)
O3	0.49943 (10)	0.88751 (7)	0.57432 (12)	0.0538 (3)
C1	0.03883 (16)	1.07454 (11)	0.29402 (15)	0.0507 (4)
C2	0.0877 (2)	1.11440 (17)	0.1761 (2)	0.0784 (5)
H2A	0.1256	1.0563	0.1397	0.118*
H2B	0.1636	1.1669	0.2193	0.118*
H2C	0.0047	1.1452	0.0949	0.118*
C3	-0.0216 (2)	1.16473 (14)	0.3541 (2)	0.0726 (5)
H3A	-0.0548	1.1376	0.4260	0.109*
H3B	-0.1032	1.1973	0.2733	0.109*
H3C	0.0548	1.2163	0.4010	0.109*
C4	-0.07095 (18)	0.98421 (15)	0.2398 (2)	0.0708 (5)
H4A	-0.0985	0.9629	0.3184	0.106*
H4B	-0.0266	0.9255	0.2119	0.106*
H4C	-0.1574	1.0070	0.1549	0.106*

C5	0.25888 (15)	0.96225 (10)	0.42366 (15)	0.0434 (3)
C6	0.37853 (15)	0.94408 (10)	0.57882 (16)	0.0474 (3)
H6A	0.4129	1.0118	0.6274	0.057*
H6B	0.3377	0.9046	0.6374	0.057*
C7	0.48857 (14)	0.77893 (10)	0.55146 (14)	0.0430 (3)
C8	0.40501 (16)	0.71184 (11)	0.59620 (17)	0.0501 (3)
H8	0.3454	0.7391	0.6398	0.060*
C9	0.41070 (15)	0.60337 (10)	0.57559 (15)	0.0465 (3)
Н9	0.3543	0.5589	0.6066	0.056*
C10	0.49740 (13)	0.55858 (9)	0.51049 (13)	0.0372 (3)
C11	0.58025 (16)	0.62869 (11)	0.46692 (16)	0.0485 (3)
H11	0.6399	0.6020	0.4230	0.058*
C12	0.57629 (16)	0.73697 (11)	0.48722 (17)	0.0513 (4)
H12	0.6332	0.7817	0.4573	0.062*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0429 (5)	0.0464 (5)	0.0447 (5)	0.0080 (4)	0.0165 (4)	-0.0013 (4)
02	0.0713 (7)	0.0657 (7)	0.0547 (6)	0.0123 (5)	0.0250 (5)	-0.0130 (5)
03	0.0412 (5)	0.0355 (5)	0.0814 (7)	0.0021 (4)	0.0224 (5)	-0.0019 (4)
C1	0.0454 (7)	0.0560 (8)	0.0483 (7)	0.0088 (6)	0.0171 (6)	0.0094 (6)
C2	0.0807 (12)	0.0946 (14)	0.0670 (11)	0.0121 (10)	0.0378 (10)	0.0271 (9)
C3	0.0677 (11)	0.0677 (11)	0.0821 (11)	0.0265 (9)	0.0309 (9)	0.0127 (9)
C4	0.0509 (9)	0.0787 (11)	0.0664 (10)	-0.0030 (8)	0.0082 (8)	0.0053 (8)
C5	0.0447 (7)	0.0381 (6)	0.0503 (7)	-0.0006 (5)	0.0227 (6)	-0.0037 (5)
C6	0.0470 (7)	0.0381 (6)	0.0538 (8)	0.0051 (5)	0.0177 (6)	-0.0026 (5)
C7	0.0361 (6)	0.0364 (6)	0.0503 (7)	0.0024 (5)	0.0117 (5)	0.0010 (5)
C8	0.0493 (8)	0.0448 (7)	0.0637 (8)	-0.0005 (6)	0.0312 (7)	-0.0061 (6)
C9	0.0489 (7)	0.0417 (7)	0.0549 (8)	-0.0054 (6)	0.0277 (6)	-0.0014 (5)
C10	0.0341 (6)	0.0379 (6)	0.0359 (6)	0.0010 (5)	0.0109 (5)	0.0033 (5)
C11	0.0487 (7)	0.0415 (7)	0.0645 (8)	0.0046 (6)	0.0327 (7)	0.0058 (6)
C12	0.0485 (8)	0.0399 (7)	0.0715 (9)	0.0004 (6)	0.0310(7)	0.0085 (6)

Geometric parameters (Å, °)

O1—C5	1.3379 (15)	C4—H4C	0.9600
O1—C1	1.4867 (16)	C5—C6	1.5118 (19)
O2—C5	1.2020 (16)	С6—Н6А	0.9700
O3—C7	1.3861 (15)	С6—Н6В	0.9700
O3—C6	1.4143 (16)	C7—C12	1.3787 (19)
C1—C4	1.513 (2)	С7—С8	1.3807 (19)
C1—C2	1.519 (2)	C8—C9	1.3890 (19)
C1—C3	1.518 (2)	С8—Н8	0.9300
C2—H2A	0.9600	C9—C10	1.3905 (18)
C2—H2B	0.9600	С9—Н9	0.9300
C2—H2C	0.9600	C10-C11	1.3929 (18)
С3—НЗА	0.9600	C10—C10 ⁱ	1.497 (2)

supplementary materials

С3—Н3В	0.9600	C11—C12	1.3845 (19)		
С3—НЗС	0.9600	C11—H11	0.9300		
C4—H4A	0.9600	C12—H12	0.9300		
C4—H4B	0.9600				
C5—O1—C1	121.76 (10)	O2—C5—C6	124.59 (12)		
C7—O3—C6	119.66 (10)	O1—C5—C6	108.99 (10)		
01—C1—C4	109.05 (11)	O3—C6—C5	111.44 (11)		
01—C1—C2	110.05 (12)	O3—C6—H6A	109.3		
C4—C1—C2	113.18 (14)	С5—С6—Н6А	109.3		
O1—C1—C3	102.28 (12)	O3—C6—H6B	109.3		
C4—C1—C3	110.99 (14)	С5—С6—Н6В	109.3		
C2—C1—C3	110.73 (14)	Н6А—С6—Н6В	108.0		
C1—C2—H2A	109.5	C12—C7—C8	119.36 (12)		
C1—C2—H2B	109.5	С12—С7—О3	115.67 (12)		
H2A—C2—H2B	109.5	C8—C7—O3	124.85 (12)		
C1—C2—H2C	109.5	С7—С8—С9	119.45 (13)		
H2A—C2—H2C	109.5	С7—С8—Н8	120.3		
H2B—C2—H2C	109.5	С9—С8—Н8	120.3		
С1—С3—НЗА	109.5	C8—C9—C10	122.62 (12)		
С1—С3—Н3В	109.5	С8—С9—Н9	118.7		
НЗА—СЗ—НЗВ	109.5	С10—С9—Н9	118.7		
С1—С3—Н3С	109.5	C9—C10—C11	116.31 (11)		
НЗА—СЗ—НЗС	109.5	C9—C10—C10 ⁱ	121.94 (14)		
НЗВ—СЗ—НЗС	109.5	C11—C10—C10 ⁱ	121.75 (14)		
C1—C4—H4A	109.5	C12-C11-C10	121.79 (13)		
C1—C4—H4B	109.5	C12—C11—H11	119.1		
H4A—C4—H4B	109.5	C10-C11-H11	119.1		
C1—C4—H4C	109.5	C7—C12—C11	120.47 (13)		
H4A—C4—H4C	109.5	C7—C12—H12	119.8		
H4B—C4—H4C	109.5	C11—C12—H12	119.8		
O2—C5—O1	126.41 (13)				
C5—O1—C1—C4	64.56 (16)	C12—C7—C8—C9	-0.1 (2)		
C5—O1—C1—C2	-60.14 (17)	O3—C7—C8—C9	-175.79 (13)		
C5—O1—C1—C3	-177.86 (12)	C7—C8—C9—C10	-0.3 (2)		
C1—O1—C5—O2	0.4 (2)	C8—C9—C10—C11	0.3 (2)		
C1—O1—C5—C6	-178.70 (11)	C8—C9—C10—C10 ⁱ	179.82 (14)		
C7—O3—C6—C5	-77.86 (15)	C9—C10—C11—C12	-0.1 (2)		
O2—C5—C6—O3	18.60 (19)	C10 ⁱ —C10—C11—C12	-179.55 (14)		
O1—C5—C6—O3	-162.30 (10)	C8—C7—C12—C11	0.3 (2)		
C6—O3—C7—C12	153.70 (12)	O3—C7—C12—C11	176.43 (12)		
C6—O3—C7—C8	-30.43 (19)	C10-C11-C12-C7	-0.3 (2)		
Symmetry codes: (i) $-x+1, -y+1, -z+1$.					

